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Abstract. We obtain the complete modal decomposition for the response to a constant electric
field of both finite and infinite chains of circular cylinders of arbitrary refractive index. A by-
product of the technique in the infinite case is a simple expression relating the position of the
leading resonance with the cylinder spacing.

1. Introduction

The determination of the optical response of heterogeneous media to electromagnetic waves
in the long-wavelength limit is a longstanding problem. The standard averaging methods used
initially were based on formulations such as those of Maxwell-Garnett [1], Lorentz—Lorenz
[2, 3] or Bruggeman, all of which are essentially dipole theories. Interest has come to centre
on the question of the importance of long-range interactions for both ordered and disordered
particulate arrays as well as on the effect of close approach between individual particles. It has
become clear that even in the long-wavelength or quasi-static case the detailed microgeometry
of such composite structures must be taken into account [4]. In a landmark paper, Rayleigh
[5] investigated the limits of applicability of the Lorentz—Lorenz formula and in so doing
developed a classic approach to the problem of determining the effective dielectric function of
a two-component composite with cylindrical inclusions.

In the wake of recent experimental work [6], much attention has come to focus on the
optical and transport properties as well as the band structure of systems containing metallic
inclusions [7-12]. Useful new insights into the behaviour of these composite structures have
been gained through such studies. One approach, using the ‘Bloch wave’ method, has been
successfully used to examine energy losses in colloidal metals with structure on the nanometre
scale [13]. This work has indicated that in the case of cylindrical and spherical inclusions, the
loss spectrum depends only on basic geometric parameters such as inter-particle separation. A
significant finding of this study is that in these materials the nanostructure can be replaced by
an inhomogeneous effective medium and that the effective medium concept works well in this
instance. In a further study Pitarkéal [14] evaluate the effective long-wavelength dielectric
response for a regular array of metallic cylinders using previously developed photonic band
structure calculations [15, 16]. They find that Maxwell-Garnett results work well if the centre-
to-centre separation between neighbouring cylinders is at least twice the cylinder diameter.

In an extension of the Rayleigh method &Lal [17] studied interfacial polarization for a
dielectric system of spherical particles subject to a low-frequency potential. In this case it is
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found that for spherically symmetric two-particle distributions all multipole momextept
dipoles are zero and that within the mean-field approximation the Maxwell-Garnett result is
rigorous. However, they find that for clustered inclusions and particle chaining there can be
large deviations from the Maxwell-Garnett formula due to the presence of strong multipolar
effects. For spherical metal particles in an insulating host the absorption peak is found to be
both greatly increased in intensity and significantly red-shifted [18], a finding which is in line
with earlier reports that unusually large far-infrared absorption of some heterogeneous systems
is attributable to clustering effects [19]. A drawback of the technique developed by Fu and
co-workers is that for large numbers of closely spaced particles, very large matrices must be
employed to obtain satisfactory convergence.

There is no doubt that the availability of high-speed computers has now made the unwieldy
calculations required by several recentapproaches much less of a problem. Itwould nonetheless
be worthwhile developing simpler models leading to the generation of smaller matrices and
thus to the possibility of obtaining analytic results which could be of use in the fitting of
observed data. With this in mind we now address the problem of determining the quasi-static
dielectric response of a two-component composite consisting of either a finite or an infinite
chain of cylinders of one material embedded in a matrix made of a second material. The
cylinders will be considered to be of infinite length and so the problem becomes one of solving
the Laplace equation in two dimensions. We shall use combinations of appropriate coordinate
frames and then write down the series expansions for the harmonic potentials in terms of the
corresponding variables. Once this is done, the imposition of the relevant boundary conditions
ateach cylinder surface leads naturally to an explicit spectral decomposition for the polarization
response.

If the relative dielectric function for our two-component system is giverz lilgen we
show that the coefficients in the series expansion for the induced potential satisfy the following
equation:

1+e
wI+8)-A=K V=T (1)

whereA is the sought-after vector of potential coefficiertss the unit matrix K is a constant
vector andS is thestructure matrixwhich only depends on the sizes and spatial disposition
of the cylinders. We then diagonalize the matfixfind the 1/ r coefficient of the far-field
expansion for the induced potential and thus determine the polarizability. This leads to the
following expression for the effective response [20]:

8n

(x)= ()

- v+,

where ther; are the eigenvalues of the structure maix We thus arrive at thBergman
spectral representatiof21] for the response in terms of the so-called spectral weightsd
depolarization factors, :

f— g" —_— p—
<X>_Zn:—x’l+Ln x=€—1 (3)
where
8n = %g;, L, = :‘Zl(l_ fn)-

Since its advent, the spectral formulation (3) for the average dielectric response of a two-

component system has attracted a lot of attention [22, 23] and been usefully extended [24].
The quasi-static absorption response for infinite chains of metallic cylinders at optical

and infrared frequencies has been examined previously [25], however, the full normal-mode
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Bergman decomposition for such chains has not been presented so far. In their work Kempe
et al [25] use a rapidly convergent technique based on a periodic conformal transformation.
Their matrix equation for the polarization is found by satisfying the boundary conditions
in terms of polar coordinates on one cylinder and then determining the coefficients in the
series expansion for the induced potential by means of a Fourier decompaosition. The built-in
translational symmetry guarantees that this matching procedure is automatically achieved for
all cylinder surfaces in the chain. The three-dimensional analogue of this method has been
successfully applied to the response problem of an infinite chain of identical metallic spheres
[26] by means of hypercomplex variable theory [27]. At close approach the cylinder and sphere
chains exhibit qualitatively similar responses but both the red shift and absorption strength are
greater in the cylinder case.

This paper completes and extends the two-dimensional cylinder chain work initiated by
Kempeet al. We consider both finite and infinite chains. In the former case we adopt a
recently developed method involving combinations of coordinate frames [20]. In the latter
case we employ a completely new approach which provides a remarkably concise and elegant
solution for the response. Cylinder chain structures are of particular interest because of the
large infrared absorption peak. Kemeeal make the plausible suggestion that this peak is
essentially the spectral weight of the fundamental mode, that ig, thé term in (3). In this
paper we show that this is in fact the case and that for chains of aluminium cylinders containing
at least four cylinders most of the spectral weight is in the fundamental mode which is strongly
red-shifted and intense. For both the finite and infinite cases we shall obtain the elements of
S in analytic form and, in the case of the uniformly spaced infinite chain, use this to obtain a
simple closed expression for the leading eigenvalue (and thus the leading depolarization mode
L;) as a function of the cylinder spacing. This result will be of particular relevance in the
fitting and interpretation of optical data for composites known to contain chain-like clusters of
metallic inclusions.

2. Governing equations

The approach employed here to find the spectral decomposition (3) for cylinder chains is an
interesting extension of methods presented previously [20, 28]. As in these earlier studies
we adopt the complex variable formalism to construct appropriate conformally determined
coordinate frames whose contour lines include the circular cylinder boundaries. The present
technique has several unexpected advantages, the most noteworthy being that the elements
of the structure matrix can be determined exactly in closed form. We shall exemplify the
method by first considering finite chains containing an even number of cylinders and then in
the following section move on to a consideration of the infinite chain.

We shall consider applied fields of unit strength acting along the chain axis. Atall cylinder
boundaries the following matching conditions must be satisfied by the ii@é?p)), outer
((¢©")), and applied (¢@°P)) potentials:

¢(app) + ¢(0Ut) — ¢(iﬂ) (4a)
(app (out) (in)

WL _ N (4b)
on on on

If we introduce the complex variable = x + iy then an applied field of unit strength
acting along the chaitx) axis will have a potential given by the real part of

¢(app =z

The strategy which we adopt to solve the Laplace equation is based on a well-established
sequence of steps [20]. The most important elements of this approach are the following two
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Finite Chain with 2r Unit Cylinders

Figure 1. A chain of 2 circular unit cylinders centred along theaxis at the pointstd;,
i=1,..., r. The bipolar coordinate frames corresponding to cylinder pairare indicated.

results: first, that the Laplace equation remains invariant under a conformal transformation
of the variables and, second, that linear combinations of harmonic functions which vanish
at infinity are also harmonic functions vanishing at infinity. We shall apply these two key
observations in the following solution of the response problem for finite chains.

3. The finite chain

We shall restrict attention to fields acting along the chain axis as this is the case giving rise to
the red shift in the response. The solution for a transverse field will follow trivially from the
longitudinal solution through an application of Keller's reciprocal theorem [29]. For simplicity
we shall only consider chains containing an even number of equally sized cylinders. Itis a
simple matter to modify the technique to chains containing an odd number of differently sized
circular cylinders. We shall therefore consider chains containingp-intersecting circular
cylinders of unit radius. The geometrical arrangement is displayed in figure 1.

We shall view the chain as being composed of a sequence of nested cylinder pairs
emanating from the chain centre at= 0. In this scheme the ‘first’ cylinder pair is the
innermost one centred at the poinatg;, the ‘second’ pair is centred at the pointg,, and
so on. Each of the cylinder pairs is allocated its own ‘local’ bipolar frame. So, the bipolar
frame corresponding to thiéh cylinder pair will be given byw; where [28]:

1 +a;
w,~=ui+ivi=—log<z a) a;, = dl»z—l. (5)
2&,‘ Z—a

The boundary of the right-hand unit cylinder of pais given by

uip= 2% log (ai +,/1 +a,2) . (6)

1

The local outer potential for cylinder paimwill be the real part of

¢i(out)(wl_) _ ZA’(:') sinh(2a;nw;) @)

n=1
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and the corresponding potential within the right-hand member of pelf be the real part of

o (w) =) Bem ®
n=1
Each cylinder pair will contribute its ‘own’ outer potential to the total outer potential which
will be denoted byd,. We thus have

D) =) ¢i(wy). ©)
i=1

The series expansion for the potential of the applied field in terms of the variables ofiframe
will be given by the real part of

1+ e—2a w; B
= (e ) 2 e (10
to within a constant term. The expansion (10) tells us that the eigenfunctions for the cylinder
pairi are the exponentials

g 2aikwi (12)

The total response potentidl, is now matched across the boundary of the right-hand
cylinder of each pair in succession according to (4) in such a way that when matching across
the boundary of cylinder pairall variables are expressed in terms of the eigenfunctions (11)
of that pair. In this way we shall obtain- 2quations for the set ofr2inknown coefficients
AD andB®, i = 1,...,r. We then eliminate th&!" and obtain a matrix equation of the
form (1) for the desired outer coefficients”.

We now consider the matching procedure on cylinder paif do this we must be able
to expand the outer potentials for cylinder paitj # i), namely the sinh@nw;, in terms
of the eigenfunctions (11) in a series which is convergent on the boundary of the right-hand
cylinder of pairi. Eliminatingz between the expressions (5) for andw; and then defining

a,-+aj

Mij =
' a4 —aq

we obtain the following [30]:
—2a; w;

for
|pije 2| < 1 (12)
where
REGL ) = npf " A+ puF) (D Fon(1—n, 1— k. 2.1 +p3).
On the boundary of the right-hand cylinder of paiwe have, using (6), that

-1
— |e_2aiwr<0| — @ 2aitio — (ai +./1 +ai2)

fromwhichitis easy to show thatthe convergence condition (12) is satisfied for non-intersecting
cylinders whenever #£ j. We therefore obtain

o0
sinh 2znw; = Z R (i, j)e 2ukw
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where
Ryy(i, j) = 3(Ry (i, ) — R, (i, ).

Substitutingy®" from (7),¢"™ from (8) and the applied potential from (10) into the boundary
conditions (4) leads to two linear equations in cagi2; connecting theA”’ and theB".
Dropping the summation overand eliminating theB{" produces the following equation for
the coefficientsA") of cylinder pairi:

r o0
AW +p) + Y384l HAY = 4aip? (13)
j=1 k=1
J#i

where we have substituted for, from (6) and defined
Suklis ) = =207 R, ).

We thus have equations of the form (13) each corresponding to the matching of the total outer
potential®, with each of th@f'”) across the right-hand cylinders of pairs = 1, ..., r. Each
of the equations (13), truncated to ordéycan be written in matrix form as

Iy + PY) - AY + 7 SnG, j) - AY = K (14)
J#
whereSy (i, j) is the matrix of elements, (i, j), 1<n < N,1< k< Nand

2
p? 0 .. 0 Pij
; 4 T ; P
Pjg;) = 0 » ’ KI(\Z,) = 4q; .
S L0 :
0 --- 0 p& ,0,-2N
Now, putting the equations (14) for alld i < r together and defining
AP K
A=| : K= :
AQ Ky
we obtain the system (1) efV equations where theV x r N structure matrix is given by
Py Sy(L2 = Sn(L,1)
Sy(2,1) ) :
S = . (15)
Sy(r—1,r)
Sy(r, 1) . Sy(r,r—1) Py

We obtain the polarizability by determining the! term in the far-field expansion of the outer
potential (9). This is given by [28]

4 N )
(X)r = ;Z naiAfl’). (16)
1

i=1 n=
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We now diagonalize the structure matrix (15), solvedcsind then substitute into (16) to obtain
the weightg,, corresponding to the eigenvalugef the matrix (15). We obtain decomposition
(3) with

rN rN n—1 _
Zza[n/N'l <n - \‘ N J) Uananq n = 2(1 ) (17)
p=1lq=

forn = 1,...,rN, where theU;; andU;; are the elements of the matricesand U1,
respectively, which diagonalize the matSxdefined by (15) and thg are the eigenvalues of

S.

The results (17) are valid for any set of Bon-intersecting co-axial unit cylinders with
centrestd;,i = 1,...,r. Itis a routine matter to obtain the response for chains containing
an odd number of cylinders. In this case we would place the middle cylinder at the origin of
coordinates and assign it a polar frame. The remaining cylinders will form pairs on the left
and right of this central cylinder and to these we would assign bipolar frames in the manner
outlined above.

4. The infinite chain

We begin here by reviewing the problem encountered when a single coordinate frame is used
to represent the contours of each cylinder within an infinitely long chain of such cylinders.
This chain frame was obtained by situating sources and sinks along the horizontal axis. The
problem here occurred when one wanted to consider closely spaced cylinders. In this instance
the contours lost their circular shape and became more and more elongated as the inter-cylinder
spacing decreased [28]. This difficulty was overcome in the Keet [25] study of the
infinite chain problem by means of a semi-numerical matching of boundary conditions on a
single cylinder. Here we take a completely new approach which leads to a concise solution
permitting explicit determination of the elements of the structure matrix in a very simple
closed form. As each element of the structure matrix can be determined exactly, the only
approximation occurs via truncation. This will enable us to achieve excellent convergence.
For simplicity we will again illustrate the technique in the case of a chain of equally spaced
unit cylinders. We begin by placing the origin of coordinates at the centre of a cylinder, the
zeroth cylinder, say. To each cylinder in the chain we allocate a corresponding polar frame
centred at the relevant cylinder’s centre. If the cylinder centres are at the point@ma,
m € Z, then these polar frames will be given by

w,, = log(z — 2ma) a>1

Consider now the central cell to which is associated the coordinate fugme&he outer
potential for this cylinder will be the real part of

(out) = A(O)
Z A(O)ef(anl)wo — Zz,:l_l
n=1
while its interior poten'ual will be the real part of
. o8] o8
¢gn) — Z BV(IO)e(Zn—l)wo — Z B’EO)ZZn—l' (18)
n=1 n=1

Analogously, the outer potential corresponding to the cylinder centred at thezpsirtina
will be the real part of
o Alm)

o0
(outy _ Amg=@n=Dw, _ __n 19
¢m Z n Z (z — zma)Zn—l ( )

n=1 n=1
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Now, just as in the case of the finite chains, we take the total outer poteiato be the
sum of all the local outer potentiafg®?, m € Z. However, since each cylinder in an evenly
spaced infinite chain of identical cylinders which will behave identically, we have

A = A, B!™ = B, m e 7. (20)

Thus the total outer potential ‘seen’ by the cylinder centred at the arigird will be the real
part of

o0

o 1 1
_ (out) _
Poc(t) = ) B —;An 1t o |- (21)

m=—00 m#0

M,(z,a)

The key to the solution is to obtain an appropriate form for the séigg, a). Using the
result [31]

00 1 1 o) ts—le—lz
Z = / —dr Res > 1
= (z+r) ') Jo 1—e

we obtain the following:
-2 [ t2;172 tz
M,(z,a) = inh{ — ) dr. 22
0= G fy & -1o™() @ @2
Expanding the integrand in (22) in positive powerg ¢déads to

My(z.a) =Y Cor(@)® " (23)
k=1
where

2 _
Cox(a) = <2n+2k 3

where we have used the following definition for the Riemann zeta function [32]:
oo tsfl

1
C(S)=m/0 e‘—ldt Res > 1.

We now match boundary conditions on the central cylinder. The relevant inner and outer
potentials are, by (18), (20), (21) and (23), just

. 00 1 >
¢(|n) _ Z Bn22n71 Do(z) = ZA" (ﬁ + Z Cn,k(a)Z2k1> (25)
n=1 n=1 ' k=1

with

P = 7. (26)

Substituting the expressions (25) and (26) into the boundary conditions (4) and working in
polar coordinate¢r, 6) we obtain two linear equations in ceg connecting thet,, and theB,,.
Dropping the summation ovarand eliminating theB, leads to the form (1) for thd,, where

the elements;; andK; of the structure matrids and the constant vectdt, respectively, are
given by

Sij = Ci j(a) K; = éi1. (27)
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The polarizability of the central cylinder is found from thgz oefficient of¢©“® and so

(X)oo = Aj.

We now diagonalizeS and solve forA in order to determinet;. In this way we obtain the
decomposition (3) with

8n = Uannl L,= %(1 — In) (28)

forn = 1,..., N, where theU;; and U,-j are the elements of the matricés and U1,
respectively, which diagonalize the mat$xdefined in (27) and thg, are the eigenvalues of
this matrix.

It is important to note that although the spectral weights and depolarization factors for a
given geometry are unique, the values of the terms in (1) are not. In other words, different
solution methods will generally lead to different structure matrices and thus to different rates of
convergence in numerical calculations. With this in mind, and for the purposes of comparison,
the matrix equations of Kempet al have been recast into the form (1) and the resulting
structure matrixS’ determined. A numerical examination 8f shows that it contains the
structure matrixS defined by (27) as a sub-matrix. In particular, we find that the individual
elements of these two matrices are related by

Sij = Séifl,ijl
and that
11(N) = 1;(2N) (29)

wherer; (N) andr; (N) denote the respective first eigenvalues of the truncated structure matrices
Sy and S}, as functions of the truncation ordaf. Relation (29) shows that for numerical
calculations the solution for the infinite chain presented in this section converges twice as
rapidly as that of Kempet al .

5. Application

We have used the results of sections 3 and 4 to obtain some sample responses as functions of
wavelength for aluminium cylinders in air. Uniformly spaced chains are considered in which
the centre-to-centre spacing is 2.1 units (for the finite chaips: (2i — 1)d with d = 1.05;
for the infinite chain:a = 1.05). We have used equations (2), (17) and (28) to calculate the
imaginary part of the polarizability for cylinder chains containing four, twenty and an infinite
number of cylinders. These plots as functions of wavelength are displayed in figure 2. In
each case the field acts along the chain axis. The wavelength dependencies of the complex
dielectric constants for metallic aluminium are obtained from tabulated values [33]. In each
case the contributions of the first couple of resonances were examined separately and it was
seen that the red-shifted peak was almost entirely the contribution of the fundamental mode
(n = 1). Therefore, if we could obtain a simple enough expression for the first eigenvalue in
terms of the spacing parameterthen it would be possible to use experimentally determined
response curves to reliably calculate the spacing parameters for thin films containing cylinder
chain structures. We now deduce an expression for this first eigenvalue using the expression
(24) for the elements of the structure matrix of the infinite chain.

We begin by noting that for even integers the Riemann zeta function can be written in
terms of Bernoulli numbers,, in the following way [32]:

(Zn)Zn

¢(2n)
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70 ¢

0.1 0.15 0.2 0.25 0.3 0.35 0.4
Wavelength (um)

Figure 2. Plots of the imaginary part of the response as a function of wavelength for chains of
aluminium cylinders in air. The centre-to-centre separation between cylinders is 2.1 units in each
case. The responses for two finite chains are displayed, one containing four cylinders (shown
dotted) the other containing 20 cylinders (shown dashed), together with the response for the infinite
chain (shown solid).

thus yielding the following expression for the elements of the structure matrix:

| Bojsoj_ola?=2=2i

Si = T Giv 2 — 22 — D@ = 2)

(30)
where

a=ajm.
The infinite chain structure matrix truncated to order two is

1222 2403
S2=—
1 1
@ 30241°

where we have substituted the values for the Bernoulli numBgrs, and Bg [32] into (30).
Calculation of the larger of the two eigenvaluesSy provides the following approximate
formula for the first eigenvalue:

5(1 + 25Z%) + /25 — 730&4 + 1587 60@3 31
3024@5 ' (31)
As can be seen from figure 3 the approximate expression (31) for the first eigenvalue compares
well with the exact value over the whole range of values of the spacing paraméter very
close approach between the cylindéas— 1), the approximation (31) is in error by about
only 8.5%.
We now relate the value fai to the wavelength at which the leading resonance occurs.
For the purpose of illustration we consider metal cylindargacuoand lete = ¢’ +i¢”. If
we realize the denominator in expression (2) for the response then we see that the value of
at thenth resonance for longitudinal applied fields will be given by [28]:
t, +1

= . 32
en tn _ 1 ( )

t1(a) =
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e o o
~3 [oe] )

first eigenvalue, t;

e
o

05t . , . . .
1 1.05 1.1 1.15 1.2 1.25

cylinder spacing, a

Figure 3. A graph showing the value of the first eigenvaluef the structure matri as a function

of the separation parameterfor the infinite chain. The solid curve represents the exact value of
11 calculated directly from the truncated structure maSix. The dashed curve is a plot of the
approximation (31) for;.

Hence, by (32), for the uniformly spaced infinite chain the wavelengttat which the leading
resonance occurs, will satisfy

f(a)+1
t1(a) — 1
Substituting expression (31) fef(a) into (33) then gives a simple relationship between
and the chain parameter

€ ()‘c) = (33)

6. Conclusion

Inthis paper we have successfully solved the electrostatic response problem for cylinder chains
containing either a finite or an infinite number of circular cylinders and obtained spectral
decompositions for their responses. The interesting aspect of this physical problem is the
existence of a largely isolated first resonance corresponding to the first eigenvalue of the
structure matrix. The method used to obtain the response for chains of infinite extent has
enabled an accurate expression to be obtained for this eigenvalue in terms of the inter-cylinder
spacing. This is of obvious benefit for those wishing to obtain geometrical parameters from
optical data.

The work presented here can be extended in two different ways. The generalization of the
technique of section 4 to two-dimensional chains and arrays of elliptical cylinders has recently
been completed. A report on this work, couched in terms of the traditional Rayleigh approach,
will appear shortly [34]. Work is also under way on the response problem for finite chains and
clusters of spheres based on a combination of the superposition technique outlined in section 3
and the hypercomplex variable formalism cited earlier.
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