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Abstract. We obtain the complete modal decomposition for the response to a constant electric
field of both finite and infinite chains of circular cylinders of arbitrary refractive index. A by-
product of the technique in the infinite case is a simple expression relating the position of the
leading resonance with the cylinder spacing.

1. Introduction

The determination of the optical response of heterogeneous media to electromagnetic waves
in the long-wavelength limit is a longstanding problem. The standard averaging methods used
initially were based on formulations such as those of Maxwell–Garnett [1], Lorentz–Lorenz
[2, 3] or Bruggeman, all of which are essentially dipole theories. Interest has come to centre
on the question of the importance of long-range interactions for both ordered and disordered
particulate arrays as well as on the effect of close approach between individual particles. It has
become clear that even in the long-wavelength or quasi-static case the detailed microgeometry
of such composite structures must be taken into account [4]. In a landmark paper, Rayleigh
[5] investigated the limits of applicability of the Lorentz–Lorenz formula and in so doing
developed a classic approach to the problem of determining the effective dielectric function of
a two-component composite with cylindrical inclusions.

In the wake of recent experimental work [6], much attention has come to focus on the
optical and transport properties as well as the band structure of systems containing metallic
inclusions [7–12]. Useful new insights into the behaviour of these composite structures have
been gained through such studies. One approach, using the ‘Bloch wave’ method, has been
successfully used to examine energy losses in colloidal metals with structure on the nanometre
scale [13]. This work has indicated that in the case of cylindrical and spherical inclusions, the
loss spectrum depends only on basic geometric parameters such as inter-particle separation. A
significant finding of this study is that in these materials the nanostructure can be replaced by
an inhomogeneous effective medium and that the effective medium concept works well in this
instance. In a further study Pitarkeet al [14] evaluate the effective long-wavelength dielectric
response for a regular array of metallic cylinders using previously developed photonic band
structure calculations [15, 16]. They find that Maxwell–Garnett results work well if the centre-
to-centre separation between neighbouring cylinders is at least twice the cylinder diameter.

In an extension of the Rayleigh method Fuet al [17] studied interfacial polarization for a
dielectric system of spherical particles subject to a low-frequency potential. In this case it is
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found that for spherically symmetric two-particle distributions all multipole momentsexcept
dipoles are zero and that within the mean-field approximation the Maxwell–Garnett result is
rigorous. However, they find that for clustered inclusions and particle chaining there can be
large deviations from the Maxwell–Garnett formula due to the presence of strong multipolar
effects. For spherical metal particles in an insulating host the absorption peak is found to be
both greatly increased in intensity and significantly red-shifted [18], a finding which is in line
with earlier reports that unusually large far-infrared absorption of some heterogeneous systems
is attributable to clustering effects [19]. A drawback of the technique developed by Fu and
co-workers is that for large numbers of closely spaced particles, very large matrices must be
employed to obtain satisfactory convergence.

There is no doubt that the availability of high-speed computers has now made the unwieldy
calculations required by several recent approaches much less of a problem. It would nonetheless
be worthwhile developing simpler models leading to the generation of smaller matrices and
thus to the possibility of obtaining analytic results which could be of use in the fitting of
observed data. With this in mind we now address the problem of determining the quasi-static
dielectric response of a two-component composite consisting of either a finite or an infinite
chain of cylinders of one material embedded in a matrix made of a second material. The
cylinders will be considered to be of infinite length and so the problem becomes one of solving
the Laplace equation in two dimensions. We shall use combinations of appropriate coordinate
frames and then write down the series expansions for the harmonic potentials in terms of the
corresponding variables. Once this is done, the imposition of the relevant boundary conditions
at each cylinder surface leads naturally to an explicit spectral decomposition for the polarization
response.

If the relative dielectric function for our two-component system is given byε then we
show that the coefficients in the series expansion for the induced potential satisfy the following
equation:

(νI + S) ·A =K ν = 1 + ε

1− ε (1)

whereA is the sought-after vector of potential coefficients,I is the unit matrix,K is a constant
vector andS is thestructure matrixwhich only depends on the sizes and spatial disposition
of the cylinders. We then diagonalize the matrixS, find the 1/r coefficient of the far-field
expansion for the induced potential and thus determine the polarizability. This leads to the
following expression for the effective response [20]:

〈χ〉 =
∑
n

g′n
ν + tn

(2)

where theti are the eigenvalues of the structure matrixS. We thus arrive at theBergman
spectral representation[21] for the response in terms of the so-called spectral weightsgn and
depolarization factorsLn:

〈χ〉 =
∑
n

gn

χ−1 +Ln
χ = ε − 1 (3)

where

gn = 1
2g
′
n Ln = 1

2(1− tn).
Since its advent, the spectral formulation (3) for the average dielectric response of a two-
component system has attracted a lot of attention [22, 23] and been usefully extended [24].

The quasi-static absorption response for infinite chains of metallic cylinders at optical
and infrared frequencies has been examined previously [25], however, the full normal-mode
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Bergman decomposition for such chains has not been presented so far. In their work Kempe
et al [25] use a rapidly convergent technique based on a periodic conformal transformation.
Their matrix equation for the polarization is found by satisfying the boundary conditions
in terms of polar coordinates on one cylinder and then determining the coefficients in the
series expansion for the induced potential by means of a Fourier decomposition. The built-in
translational symmetry guarantees that this matching procedure is automatically achieved for
all cylinder surfaces in the chain. The three-dimensional analogue of this method has been
successfully applied to the response problem of an infinite chain of identical metallic spheres
[26] by means of hypercomplex variable theory [27]. At close approach the cylinder and sphere
chains exhibit qualitatively similar responses but both the red shift and absorption strength are
greater in the cylinder case.

This paper completes and extends the two-dimensional cylinder chain work initiated by
Kempeet al. We consider both finite and infinite chains. In the former case we adopt a
recently developed method involving combinations of coordinate frames [20]. In the latter
case we employ a completely new approach which provides a remarkably concise and elegant
solution for the response. Cylinder chain structures are of particular interest because of the
large infrared absorption peak. Kempeet al make the plausible suggestion that this peak is
essentially the spectral weight of the fundamental mode, that is, then = 1 term in (3). In this
paper we show that this is in fact the case and that for chains of aluminium cylinders containing
at least four cylinders most of the spectral weight is in the fundamental mode which is strongly
red-shifted and intense. For both the finite and infinite cases we shall obtain the elements of
S in analytic form and, in the case of the uniformly spaced infinite chain, use this to obtain a
simple closed expression for the leading eigenvalue (and thus the leading depolarization mode
L1) as a function of the cylinder spacing. This result will be of particular relevance in the
fitting and interpretation of optical data for composites known to contain chain-like clusters of
metallic inclusions.

2. Governing equations

The approach employed here to find the spectral decomposition (3) for cylinder chains is an
interesting extension of methods presented previously [20, 28]. As in these earlier studies
we adopt the complex variable formalism to construct appropriate conformally determined
coordinate frames whose contour lines include the circular cylinder boundaries. The present
technique has several unexpected advantages, the most noteworthy being that the elements
of the structure matrix can be determined exactly in closed form. We shall exemplify the
method by first considering finite chains containing an even number of cylinders and then in
the following section move on to a consideration of the infinite chain.

We shall consider applied fields of unit strength acting along the chain axis. At all cylinder
boundaries the following matching conditions must be satisfied by the inner((φ(in))), outer
((φ(out))), and applied((φ(app))) potentials:

φ(app) + φ(out) = φ(in) (4a)

∂φ(app)

∂n
+
∂φ(out)

∂n
= ε ∂φ

(in)

∂n
. (4b)

If we introduce the complex variablez = x + iy then an applied field of unit strength
acting along the chain(x) axis will have a potential given by the real part of

φ(app) = z.
The strategy which we adopt to solve the Laplace equation is based on a well-established

sequence of steps [20]. The most important elements of this approach are the following two
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Figure 1. A chain of 2r circular unit cylinders centred along thex-axis at the points±di ,
i = 1, . . . , r. The bipolar coordinate frameswi corresponding to cylinder pairi are indicated.

results: first, that the Laplace equation remains invariant under a conformal transformation
of the variables and, second, that linear combinations of harmonic functions which vanish
at infinity are also harmonic functions vanishing at infinity. We shall apply these two key
observations in the following solution of the response problem for finite chains.

3. The finite chain

We shall restrict attention to fields acting along the chain axis as this is the case giving rise to
the red shift in the response. The solution for a transverse field will follow trivially from the
longitudinal solution through an application of Keller’s reciprocal theorem [29]. For simplicity
we shall only consider chains containing an even number of equally sized cylinders. It is a
simple matter to modify the technique to chains containing an odd number of differently sized
circular cylinders. We shall therefore consider chains containing 2r non-intersecting circular
cylinders of unit radius. The geometrical arrangement is displayed in figure 1.

We shall view the chain as being composed of a sequence of nested cylinder pairs
emanating from the chain centre atz = 0. In this scheme the ‘first’ cylinder pair is the
innermost one centred at the points±d1, the ‘second’ pair is centred at the points±d2, and
so on. Each of ther cylinder pairs is allocated its own ‘local’ bipolar frame. So, the bipolar
frame corresponding to theith cylinder pair will be given bywi where [28]:

wi = ui + ivi = 1

2ai
log

(
z + ai
z− ai

)
ai =

√
d2
i − 1. (5)

The boundary of the right-hand unit cylinder of pairi is given by

ui,0 = 1

2ai
log

(
ai +

√
1 +a2

i

)
. (6)

The local outer potential for cylinder pairi will be the real part of

φ
(out)
i (wi) =

∞∑
n=1

A(i)n sinh(2ainwi) (7)
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and the corresponding potential within the right-hand member of pairi will be the real part of

φ
(in)
i (wi) =

∞∑
n=1

B(i)n e−2ainwi . (8)

Each cylinder pair will contribute its ‘own’ outer potential to the total outer potential which
will be denoted by8r . We thus have

8r(z) =
r∑
i=1

φi(wi). (9)

The series expansion for the potential of the applied field in terms of the variables of framewi
will be given by the real part of

z = ai
(

1 + e−2aiwi

1− e−2aiwi

)
= 2ai

∞∑
n=1

e−2naiwi (10)

to within a constant term. The expansion (10) tells us that the eigenfunctions for the cylinder
pair i are the exponentials

e−2aikwi . (11)

The total response potential8r is now matched across the boundary of the right-hand
cylinder of each pair in succession according to (4) in such a way that when matching across
the boundary of cylinder pairi all variables are expressed in terms of the eigenfunctions (11)
of that pair. In this way we shall obtain 2r equations for the set of 2r unknown coefficients
A(i)n andB(i)n , i = 1, . . . , r. We then eliminate theB(i)n and obtain a matrix equation of the
form (1) for the desired outer coefficientsA(i)n .

We now consider the matching procedure on cylinder pairi. To do this we must be able
to expand the outer potentials for cylinder pairj (j 6= i), namely the sinh 2ajnwj , in terms
of the eigenfunctions (11) in a series which is convergent on the boundary of the right-hand
cylinder of pairi. Eliminatingz between the expressions (5) forwi andwj and then defining

µij = ai + aj
ai − aj

we obtain the following [30]:

e±2aj nwj = µ±nij
(

1 +µ∓1
ij e−2aiwi

1 +µ±1
ij e−2aiwi

)n
=
∞∑
k=1

R±n,k(i, j)e
−2aikwi

for

|µije−2aiwi | < 1 (12)

where

R±n,k(i, j) = nµ±(n+k)
ij (1 +µ∓2

ij )(−1)kF2,1(1− n, 1− k, 2, 1 +µ∓2
ij ).

On the boundary of the right-hand cylinder of pairi we have, using (6), that

ρi = |e−2aiwi,0| = e−2aiui,0 =
(
ai +

√
1 +a2

i

)−1

from which it is easy to show that the convergence condition (12) is satisfied for non-intersecting
cylinders wheneveri 6= j . We therefore obtain

sinh 2ajnwj =
∞∑
k=0

R̃n,k(i, j)e
−2aikwi
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where

R̃n,k(i, j) = 1
2(R

+
n,k(i, j)− R−n,k(i, j)).

Substitutingφ(out)
i from (7),φ(in)i from (8) and the applied potential from (10) into the boundary

conditions (4) leads to two linear equations in cos 2ainvi connecting theA(i)n and theB(i)n .
Dropping the summation overn and eliminating theB(i)n produces the following equation for
the coefficientsA(i)n of cylinder pairi:

A(i)n (ν + ρ2n
i ) +

r∑
j=1
j 6=i

∞∑
k=1

Sn,k(i, j)A
(j)

k = 4aiρ
2n
i (13)

where we have substituted forui,0 from (6) and defined

Sn,k(i, j) = −2ρ2n
i R̃k,n(i, j).

We thus haver equations of the form (13) each corresponding to the matching of the total outer
potential8r with each of theφ(in)i across the right-hand cylinders of pairsi, i = 1, . . . , r. Each
of the equations (13), truncated to orderN , can be written in matrix form as

(νIN +P (i)
N ) ·A

(i)
N +

∑
j 6=i

SN(i, j) ·A(j)

N =K(i)
n (14)

whereSN(i, j) is the matrix of elementsSn,k(i, j), 16 n 6 N , 16 k 6 N and

P
(i)
N =


ρ2
i 0 · · · 0

0 ρ4
i

. . .
...

...
. . .

. . . 0
0 · · · 0 ρ2N

i

 K
(i)
N = 4ai


ρ2
i

ρ4
i

...

ρ2N
i

 .
Now, putting the equations (14) for all 16 i 6 r together and defining

A =
A(1)

N

...

A
(r)
N

 K =
K(1)

N

...

K
(r)
N


we obtain the system (1) ofrN equations where therN × rN structure matrix is given by

S =



P
(1)
N SN(1, 2) · · · SN(1, r)

SN(2, 1)
. . .

. . .
...

...
. . .

. . . SN(r − 1, r)

SN(r, 1) · · · SN(r, r − 1) P
(r)
N


. (15)

We obtain the polarizability by determining thez−1 term in the far-field expansion of the outer
potential (9). This is given by [28]

〈χ〉r = 4

r

r∑
i=1

N∑
n=1

naiA
(i)
n . (16)
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We now diagonalize the structure matrix (15), solve forA and then substitute into (16) to obtain
the weightsgn corresponding to the eigenvaluestn of the matrix (15). We obtain decomposition
(3) with

gn = 2

r

rN∑
p=1

rN∑
q=1

adn/Ne

(
n−N

⌊
n− 1

N

⌋)
UpnŪnqKq Ln = 1

2(1− tn) (17)

for n = 1, . . . , rN , where theUij and Ūij are the elements of the matricesU andU−1,
respectively, which diagonalize the matrixS defined by (15) and thetn are the eigenvalues of
S.

The results (17) are valid for any set of 2r non-intersecting co-axial unit cylinders with
centres±di , i = 1, . . . , r. It is a routine matter to obtain the response for chains containing
an odd number of cylinders. In this case we would place the middle cylinder at the origin of
coordinates and assign it a polar frame. The remaining cylinders will form pairs on the left
and right of this central cylinder and to these we would assign bipolar frames in the manner
outlined above.

4. The infinite chain

We begin here by reviewing the problem encountered when a single coordinate frame is used
to represent the contours of each cylinder within an infinitely long chain of such cylinders.
This chain frame was obtained by situating sources and sinks along the horizontal axis. The
problem here occurred when one wanted to consider closely spaced cylinders. In this instance
the contours lost their circular shape and became more and more elongated as the inter-cylinder
spacing decreased [28]. This difficulty was overcome in the Kempeet al [25] study of the
infinite chain problem by means of a semi-numerical matching of boundary conditions on a
single cylinder. Here we take a completely new approach which leads to a concise solution
permitting explicit determination of the elements of the structure matrix in a very simple
closed form. As each element of the structure matrix can be determined exactly, the only
approximation occurs via truncation. This will enable us to achieve excellent convergence.

For simplicity we will again illustrate the technique in the case of a chain of equally spaced
unit cylinders. We begin by placing the origin of coordinates at the centre of a cylinder, the
zeroth cylinder, say. To each cylinder in the chain we allocate a corresponding polar frame
centred at the relevant cylinder’s centre. If the cylinder centres are at the pointsz = 2ma,
m ∈ Z, then these polar frames will be given by

wm = log(z− 2ma) a > 1.

Consider now the central cell to which is associated the coordinate framew0. The outer
potential for this cylinder will be the real part of

φ
(out)
0 =

∞∑
n=1

A(0)n e−(2n−1)w0 =
∞∑
n=1

A(0)n

z2n−1

while its interior potential will be the real part of

φ
(in)
0 =

∞∑
n=1

B(0)n e(2n−1)w0 =
∞∑
n=1

B(0)n z
2n−1. (18)

Analogously, the outer potential corresponding to the cylinder centred at the pointz = 2ma
will be the real part of

φ(out)
m =

∞∑
n=1

A(m)n e−(2n−1)wm =
∞∑
n=1

A(m)n

(z− 2ma)2n−1
. (19)
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Now, just as in the case of the finite chains, we take the total outer potential,8∞, to be the
sum of all the local outer potentialsφ(out)

m ,m ∈ Z. However, since each cylinder in an evenly
spaced infinite chain of identical cylinders which will behave identically, we have

A(m)n = An B(m)n = Bn m ∈ Z. (20)

Thus the total outer potential ‘seen’ by the cylinder centred at the originz = 0 will be the real
part of

8∞(z) =
∞∑

m=−∞
φ(out)
m =

∞∑
n=1

An


1

z2n−1
+
∑
m6=0

1

(z− 2ma)2n−1︸ ︷︷ ︸
Mn(z, a)

 . (21)

The key to the solution is to obtain an appropriate form for the seriesMn(z, a). Using the
result [31]

∞∑
r=0

1

(z + r)s
= 1

0(s)

∫ ∞
0

t s−1e−tz

1− e−t
dt Res > 1

we obtain the following:

Mn(z, a) = −2

(2a)2n−1(2n− 1)!

∫ ∞
0

t2n−2

et − 1
sinh

(
tz

2a

)
dt. (22)

Expanding the integrand in (22) in positive powers ofz leads to

Mn(z, a) =
∞∑
k=1

Cn,k(a)z
2k−1 (23)

where

Cn,k(a) = − 2

(2a)2n+2k−2

(
2n + 2k − 3

2k − 1

)
ζ(2n + 2k − 2) (24)

where we have used the following definition for the Riemann zeta function [32]:

ζ(s) = 1

0(s)

∫ ∞
0

t s−1

et − 1
dt Res > 1.

We now match boundary conditions on the central cylinder. The relevant inner and outer
potentials are, by (18), (20), (21) and (23), just

φ(in) =
∞∑
n=1

Bnz
2n−1 8∞(z) =

∑
n=1

An

(
1

z2n−1
+
∞∑
k=1

Cn,k(a)z
2k−1

)
(25)

with

φ(app) = z. (26)

Substituting the expressions (25) and (26) into the boundary conditions (4) and working in
polar coordinates(r, θ)we obtain two linear equations in cosnθ connecting theAn and theBn.
Dropping the summation overn and eliminating theBn leads to the form (1) for theAn where
the elementsSij andKi of the structure matrixS and the constant vectorK, respectively, are
given by

Sij = Ci,j (a) Ki = δi1. (27)
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The polarizability of the central cylinder is found from the 1/z coefficient ofφ(out) and so

〈χ〉∞ = A1.

We now diagonalizeS and solve forA in order to determineA1. In this way we obtain the
decomposition (3) with

gn = U1nŪn1 Ln = 1
2(1− tn) (28)

for n = 1, . . . , N , where theUij and Ūij are the elements of the matricesU andU−1,
respectively, which diagonalize the matrixS defined in (27) and thetn are the eigenvalues of
this matrix.

It is important to note that although the spectral weights and depolarization factors for a
given geometry are unique, the values of the terms in (1) are not. In other words, different
solution methods will generally lead to different structure matrices and thus to different rates of
convergence in numerical calculations. With this in mind, and for the purposes of comparison,
the matrix equations of Kempeet al have been recast into the form (1) and the resulting
structure matrixS′ determined. A numerical examination ofS′ shows that it contains the
structure matrixS defined by (27) as a sub-matrix. In particular, we find that the individual
elements of these two matrices are related by

Sij = S ′2i−1,2j−1

and that

t1(N) = t ′1(2N) (29)

wheret1(N)andt ′1(N)denote the respective first eigenvalues of the truncated structure matrices
SN andS′N as functions of the truncation orderN . Relation (29) shows that for numerical
calculations the solution for the infinite chain presented in this section converges twice as
rapidly as that of Kempeet al .

5. Application

We have used the results of sections 3 and 4 to obtain some sample responses as functions of
wavelength for aluminium cylinders in air. Uniformly spaced chains are considered in which
the centre-to-centre spacing is 2.1 units (for the finite chains:di = (2i − 1)d with d = 1.05;
for the infinite chain:a = 1.05). We have used equations (2), (17) and (28) to calculate the
imaginary part of the polarizability for cylinder chains containing four, twenty and an infinite
number of cylinders. These plots as functions of wavelength are displayed in figure 2. In
each case the field acts along the chain axis. The wavelength dependencies of the complex
dielectric constants for metallic aluminium are obtained from tabulated values [33]. In each
case the contributions of the first couple of resonances were examined separately and it was
seen that the red-shifted peak was almost entirely the contribution of the fundamental mode
(n = 1). Therefore, if we could obtain a simple enough expression for the first eigenvalue in
terms of the spacing parametera, then it would be possible to use experimentally determined
response curves to reliably calculate the spacing parameters for thin films containing cylinder
chain structures. We now deduce an expression for this first eigenvalue using the expression
(24) for the elements of the structure matrix of the infinite chain.

We begin by noting that for even integers the Riemann zeta function can be written in
terms of Bernoulli numbers,Bn, in the following way [32]:

ζ(2n) = (2π)2n

2(2n)!
|B2n| n = 1, 2, . . .
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Figure 2. Plots of the imaginary part of the response as a function of wavelength for chains of
aluminium cylinders in air. The centre-to-centre separation between cylinders is 2.1 units in each
case. The responses for two finite chains are displayed, one containing four cylinders (shown
dotted) the other containing 20 cylinders (shown dashed), together with the response for the infinite
chain (shown solid).

thus yielding the following expression for the elements of the structure matrix:

Sij = − |B2i+2j−2|ā2−2i−2j

(2i + 2j − 2)(2j − 1)!(2i − 2)!
(30)

where

ā = a/π.
The infinite chain structure matrix truncated to order two is

S2 = −


1

12ā2

1

240ā4

1

720ā4

1

3024̄a6


where we have substituted the values for the Bernoulli numbersB2, B4 andB6 [32] into (30).
Calculation of the larger of the two eigenvalues ofS2 provides the following approximate
formula for the first eigenvalue:

t1(a) ≈ 5(1 + 252̄a4) +
√

25− 7308̄a4 + 1587 600̄a8

30 240̄a6
. (31)

As can be seen from figure 3 the approximate expression (31) for the first eigenvalue compares
well with the exact value over the whole range of values of the spacing parametera. For very
close approach between the cylinders(a → 1), the approximation (31) is in error by about
only 8.5%.

We now relate the value fort1 to the wavelength at which the leading resonance occurs.
For the purpose of illustration we consider metal cylindersin vacuoand letε = ε′ + iε′′. If
we realize the denominator in expression (2) for the response then we see that the value ofε′

at thenth resonance for longitudinal applied fields will be given by [28]:

ε′n =
tn + 1

tn − 1
. (32)
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Figure 3. A graph showing the value of the first eigenvaluet1 of the structure matrixS as a function
of the separation parametera for the infinite chain. The solid curve represents the exact value of
t1 calculated directly from the truncated structure matrixSN . The dashed curve is a plot of the
approximation (31) fort1.

Hence, by (32), for the uniformly spaced infinite chain the wavelength,λc, at which the leading
resonance occurs, will satisfy

ε′(λc) = t1(a) + 1

t1(a)− 1
. (33)

Substituting expression (31) fort1(a) into (33) then gives a simple relationship betweenλc
and the chain parametera.

6. Conclusion

In this paper we have successfully solved the electrostatic response problem for cylinder chains
containing either a finite or an infinite number of circular cylinders and obtained spectral
decompositions for their responses. The interesting aspect of this physical problem is the
existence of a largely isolated first resonance corresponding to the first eigenvalue of the
structure matrix. The method used to obtain the response for chains of infinite extent has
enabled an accurate expression to be obtained for this eigenvalue in terms of the inter-cylinder
spacing. This is of obvious benefit for those wishing to obtain geometrical parameters from
optical data.

The work presented here can be extended in two different ways. The generalization of the
technique of section 4 to two-dimensional chains and arrays of elliptical cylinders has recently
been completed. A report on this work, couched in terms of the traditional Rayleigh approach,
will appear shortly [34]. Work is also under way on the response problem for finite chains and
clusters of spheres based on a combination of the superposition technique outlined in section 3
and the hypercomplex variable formalism cited earlier.
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